THE SPHINX COLLECTION

A treasure trove of cryptarithms
retrieved from journal Sphinx


Here you have a sample of 92 cryptarithms retrieved from journal Sphinx, 1933-34 editions. The answers to these problems are given at the end of this page.

We are grateful to Jean-Pierre Le Franc (from Cesson-Sevigne, France) for lending us the Sphinx magazines from his private collection, where these puzzles were taken from. Thanks are also due to Evelyne Weiser for introducing us to Jean-Pierre's Sphinx collection.

Sphinx cryptarithms were either contributed by M. Pigeolet or otherwise submited by the subscribers to the magazine. To boost interest on cryptarithmetic, Sphinx editors used to organize puzzle contests paying cash prizes to the winners. Along the year 1933 they were running "The Cryptarithmetic Year" competition, followed by "The Cryptarithmetic Key" in January 1934.

Enjoy these old precious jewels of the cryptarithmetic art !

From Sphinx,
with love !



 

1) Sphinx - Jan 1933 - Page 7
     By M. Pigeolet
      Reconstruct the multiplication, in which all the A=3 are given.

                    . . . . . A
                  A . . . . . .           
                 ---------------
                  A . A . A . J
                  . . . . . A
              . . . A . . N
              . . . A . V
          . A . . . . I
        . . . . . A E
      J A N V I E R
     ---------------------------
      . . . . . . . . . . . . .           

 
 
2) Sphinx - Jan 1933 #115 - Page 9
     By M. Van Esbroeck
 
       A B C = C4,    B C A = D4 

 
 
3) Sphinx - Jan 1933 #116 - Page 9
    By M. de Ville (Namur)
 
     F A G = E  ×  H B I,
 
     F A G  is formed from 3 consecutive digits.
 

4) Sphinx - Jan 1933  #11 - Page 14
     By M. Pigeolet
      Ten cubes in stairstep:

      x
      x
      x
      x x x x
            x
            x
            x x x x
                  x
                  x
                  x x x x
                        x
                        x
                        x x x x
                              x
                              x
                              x x x x
 

 
5) Sphinx - Feb 1933 #120 - Page 26
     By M. Lapierre
      Reconstruct the extraction of square root.
  
                * * A B
       -----------------           
     \/ * * * * * * * *
        * *
        -------
          * * *
          A * *
          ---------
            * * * *
            B * * *
            -----------
                * * * *
                * * * *
                -------
                

 
6) Sphinx - Feb 1933  #121 - Page 26
     By M. de Ville (Namur)
 
 
       K E D = E  ×  G B,

       K E D  is formed from three consecutive digits;  G B  is formed 
       from two consecutive digits.
 

 
7) Sphinx - Feb 1933  #122 - Page 26
     By M. Rose-Innes (Yokohama)
      A printer, setting up the following division, found that he had only type numbers
      7 and  0  which he put in their respective places, and two A's, which he used to
      substitute for a certain digit that appears twice in the dividend;  but this same 
      digit was next replaced by asterisks in all other parts of the division. The divisor  
      is equal to the quocient. 

                  * * *
           ------------           
   * * *  | A * * * 7 A
            * * 0 *
            ---------
              * * * 7
              * * * *
              ---------
                * * * *
                * * * *
                -------
                      0
 

 
8) Sphinx - Feb 1933 - Page 28
     By M. Pigeolet (Anvers)
     Reconstruct the division.

 
              . 6 . . . . 
           --------------           
     2 8  | F E V R I E R
            . . 
            -----
            . . . 
            S I X
            -------
                . . .
                . . .
                -------
                    . . .
                    . . .
                    -----
                        0
 

 
9) Sphinx - Mar 1933  #125 - Page 44
     By L. Martin (Paris)
 
     Take three consecutive numbers:  x,  y,  z.

      ABC,   ACB  and  ABC + ACB  are the differences of the cubes
      of  x,  y  and  z  expressed in the equations:
  
      ABC = z3 - y3;    ACB = y3 - x3   and   ABC + ACB = z3 - x3.
 

 
10) Sphinx - Mar 1933  #126 - Page 44
     By M. Lapierre
      Reconstruct the extraction of square root.
  
              A A *
       -------------           
     \/ * * * * * A
        * *
        -------
        * * * *
        * * * *
        -----------
          * * * * *
          * * * * *
          ---------
 

 
11) Sphinx - Mar 1933 - Page 45
       By M. Pigeolet
        Reconstruct the multiplication.

                               
              A R . . 
              R A . . 
            ----------
            . . . . M
          . . . . A
        . . . . R
        M A R S 
     -----------------
      . . . . . . . .           
 

 
12) Sphinx - Apr 1933  #130 - Page 60
       By M. Lapierre (Wattrelos)
        Reconstruct the extraction of square root.
  
                * A B
         -------------           
       \/ * * * * * *
          * A
          -------
            * * * 
            * * B 
            ---------
            * * * * *
            * * * * *
            ---------
 

 
13) Sphinx - Apr 1933  #134 - Page 60
       By M. Pigeolet
 
 
        ROME, PARIS, ARRAS, ARLON and LENS  are five prime numbers.
        NIMES, ANS, MONS each of them is a product of a prime by 7.
        SPA is a square. What are these numbers ?
 

 
14) Sphinx - Apr 1933 - Page 61
       By M. Pigeolet
       Reconstruct the division.

 
                            P L S 
                 -----------------           
      A V R I L | 1 . . 6 . . . .
                    A V R I L 
                  -------------
                    . . . . . . 
                    . . . . 1 6
                    -------------
                      . . . . . .
                      P A Q U E S
                      -----------
                                0
 

 
15) Sphinx - May 1933  #135 - Page 74
       By M. Lapierre
        Reconstruct the extraction of square root.
  
              * B *
         -----------           
       \/ * * * * A
          * 
          -----
          * * * 
            * *  
            -------
              * * * 
              * * * 
              -----
 

 
16) Sphinx - May 1933  #136 - Page 74
       By M. Pigeolet
        Reconstruct the multiplication and the division.

                               
                      Q U I 
                  P R E N D 
                 -----------
                      * * *
                  * * * *
                  * * *
              * * * 
            -----------------
        Ç A | * * * * * * * | * * * * * *
 
              * *  
              -------
                * * *
                * * *
                -------
                  * * *
                  * * *
                  ---------
                      0
 

 
17) Sphinx - May 1933 - Page 76
       By M. Pigeolet
         MAI is the square of  ST.

                               
            . . . . . A 
                  M A I 
          --------------
          . . . . . . .
        . . . . . . .
      . . E N . . . 
     -------------------
      P R I N T E M P S           
 

 
18) Sphinx - Jun 1933  #141 - Page 86
       By M. Rose-Innes (Yokoama, Japan)
        In the sum of the series 500 + 501 + 502 + ..... + 501010,  it was found that 8
        consecutive digits between the 1010th and the 990th terms  (counting right to 
        left) can be represented by PIGEOLET.  What are these figures and what 
        places they occupy ? 

 
 
19) Sphinx - Jun 1933  #142 - Page 86
       By M. Pigeolet (Anvers, Belgium)
        The two words in the name of ROSE-INNES from Yokoama are squares, 
        while OR is a prime number. What are these numbers? 

 
 
20) Sphinx - Jun 1933 - Page 89
       By M. Pigeolet
        Reconstruct the multiplication.

                               
              E T E 
              * * * 
           ---------
            * * 2 1
          J U I N
          * * *
       -------------
        * * 2 * * 1           
 

 
21) Sphinx - Jul 1933 #146 - Page 105
       By M. Rose-Innes (Yokohama, Japan)
       Reconstruct the division.

 
                        * *   
                 -----------           
          A B * | * * C D *
                  * * C E 
                  ---------
                    * F F * 
                    * * E D
                    --------
                      D E *   
                                                                                    
 

 
22) Sphinx - Jul 1933  #147 - Page 105
       By M. Lapierre
        Reconstruct the extraction of square root.
  
                B A *  
         -------------           
       \/ * * * * * A
          * A
          -------
          * * * * 
          * * * C 
          -----------
              * * * * 
              * * * *
              -------
 

 
23) Sphinx - Jul 1933  #148 - Page 105
       By W. F. Cheney (from American Mathematical Monthly)
        The arithmetic mean of NED and SASH is SHUN.  Their geometric
        mean is SEND and their harmonic mean is SEED. Each letter stands 
        for a different digit. 

 
 
24) Sphinx - Jul 1933 - Page 106
       By M. Pigeolet
        Reconstruct the extraction of square root.
  
                * * * *  
         ---------------           
       \/ J U I L L E T
          * 
          ---------
              * * *             * * *
              * * *             * * *
              ---------
              * * * * *         * * * *
              * * * * *         * * * *
              ---------
                      0
 

 
25) Sphinx - Aug 1933  #151 - Page 119
       By M. Lapierre
        Reconstruct the extraction of square root.
  
                A A * 
         -------------
       \/ * * * * * A
          * *
          -------
            * * * 
            * * *  
            ---------
              * * * *
              A * * *
              -------
 

 
26) Sphinx - Aug 1933 - Page 125
       By R. Man.
        AOUT is a prime number, as well as its reverse TUOA.
 
 
            A O U T      T U O A
          + A T A O    - U * T T
          ----------   ----------
            T U * U      O * T *
 

 
27) Sphinx - Sep 1933  #156 - Page 138
       By M. Rose-Innes (Yokohama)
        Reconstruct the multiplication.

                               
              A B C D E 
                  F G A 
           -------------
            * * H * * *
            B B * * *
        * * H * * *
       -----------------
        * F * * * D * * 
 

 
28) Sphinx - Sep 1933  #157 - Page 138
       By C. A. Rupp (from American Mathematical Monthly)
        ABCB,  BCAD  and  CBAD are squares.

 
 
29) Sphinx - Sep 1933  #158 - Page 138
       By C. A. Rupp (from American Mathematical Monthly)
        ABCDE  and  BACED  are squares; C + D  and  B + E  are 
        consecutive primes.  What are these numbers?

 
 
30) Sphinx - Sep 1933 - Page 141
       By R. Man.

 
       S E P T E M B R E        S E P T E M B R E
     - E R B M E T P E S      + E R B M E T P E S
     --------------------     --------------------
       M P P B R P S S M        B * R B M R R E B
 
 

31) Sphinx - Oct 1933  #162 - Page 155
       By R. Man.
        ABCABD  =  DEB2

 
 
32) Sphinx - Oct 1933  #163 - Page 155
       By R. Man.
        ABCD is divisible by 17.
        CADB is divisible by 11.
        CDBA is divisible by 7.
        And all these three numbers are divisible by 3. What are they?

 
 
33) Sphinx - Oct 1933  #164 - Page 155
       By R. Man.
        The prime number AAAB, multiplied by 7, gives the product BEEDC.
        The same number AAAB, multiplied by 11, gives the product ADDFB.
        What is this number?

 
 
34) Sphinx - Oct 1933  #166 - Page 156
       By M. Pigeolet (Anvers)
        Find the key of  this multiplication. 

                               
                B O U L E
                R A D I S
             -------------
              1 . . . . 0
            1 1 . . . 0
          1 0 1 . . 0
          . . 0 . 0
        . . . . 0
       -------------------
        . . . . . . . . . 
 

 
35) Sphinx - Oct 1933 - Page 157
       By R. Man.
        OCTOBRE is divisible by 3 and by 7.
 
 
                  O 
           +  C T O    
           ---------   
              B R E
 

 
36) Sphinx - Oct 1933 - Page 157
       By M. Pigeolet (Anvers)
        Reconstruct the multiplication:

                               
       * * * * * *         where:   O C T O
               * *                   C T O
      -------------                  C T O B
       * * * * * *                     T O
     * * * * * *                       T O B R
    ---------------                    T O B R E
     O C T O B R E                       O B R E
                                           B R E
                                           B R
                                             R E
                                               E
                           are 11 prime numbers.
 

 
37) Sphinx - Oct 1933  #21 - Page 159
       By M. Pigeolet (Anvers)
        Reconstruct the multiplication.

                               
                  C * A A 
                R C C I K 
               -----------
                A A C C K
              * * * * *
            * * * * *
          * * * * *
        * * * * *
       -------------------
        K R A I T C H I K 
 

 
38) Sphinx - Nov 1933  #166 - Page 167
       By M. Pigeolet (Anvers)
        
        GALLUS and AMICUS are squares, 
        MAN and LANGE are primes, 
        UME and GEMIS each of them equals three times a prime number.
 
 
 
39) Sphinx - Nov 1933  #167 - Page 167
       By M. Pigeolet (Anvers)
        Reconstruct the multiplication.

                               
                T O C K 
                T O C K 
              ----------
              * * * * *
            * * * * *
          * * * * *
        * * * * *
       -----------------
        * * * * T O C K 
 

 
40) Sphinx - Nov 1933  #168a - Page 167
       By M. Pigeolet (Anvers)
        Reconstruct the extraction of square root.
  
               * R * E
      -----------------
    \/ L A P I E R R E
         *    
         -----
         * * *
         * * *
         ---------
           * * * *
           * * * *
           -----------
             * * * * *
             * * * * *
             ---------
                     0
 
 
 
41) Sphinx - Nov 1933  #168b - Page 167
       By M. Pigeolet (Anvers)
        Reconstruct the extraction of square root.
  
                  * * P I
         -----------------           
       \/ L A P I E R R E
            *
            -----
            * * *
            * * *
            ---------
              * * * *
              * * * *
              -----------
                * * * * *
                * * * * *
                ---------
                        0
 

 
42) Sphinx - Nov 1933 - Page 170
       By M. Pigeolet (Anvers)
        Reconstruct the multiplication:

                               
                     V E N T 
             N O V E M B R E 
            -----------------
                   N . . . E
                 M . . . R
               O . . . B
             S . . . M
           N . . . E
         E . . . V
       R . . . O
     B . . . N
    -------------------------
     . . . . . . . . . . . .           
 

 
43) Sphinx - Dec 1933  #171 - Page 184
       By M. Pigeolet (Anvers)
        
        ABACDEBDECA is a cube,
        AB, ACD and ECD are cubes,
        EBD is a square.
 
 

44) Sphinx - Dec 1933 - Page 187
       By M. Pigeolet (Anvers)
        Reconstruct the extraction of square root.
  
                  * * * *  
         -----------------           
       \/ D E C E M B R E
          * *
          -----------
              * * * *           * * * 
              * * * *           * * *
              -----------       
                * * * * *       * * * *
                * * * * *       * * * *
                ---------
                        0
 
 

45) Sphinx - Dec 1933 - Page 187
       By M. Roses-Innes (Yokoama)
        Reconstruct the multiplication and the square root extraction.
        The multiplier  A * * * O  is the square of  B * * ,
        

                               
                    N O E L 
                  A * * * O 
                 -----------
                  * * * * *
                * * * * *
                * * * *
              * * * *
            * * * * 
         -------------------
       \/ * * * * * * * * * | N * B * *
 
          *  
          ---------
              * * *
              * * *
              ---------
              * * * * *
              * * * * *
              -------------
                  * * * * *
                  * * * * *
                  ---------
                          0
 

 
46) Sphinx - Jan 1934  #2 - Page 11
       By R. Man (Brussels)
        Find the key: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0  by the following factorizations:
 
 
       P H A R E  =  P  ×  I  ×  P A  ×  R A
 
       D E L A I  =  S H  ×  O E O A
 
       A L O R S  =  H  ×  S S  ×  E S  ×  O I
 

 
47) Sphinx - Jan 1934  #3 - Page 11
       By A. Baudenne  (Annevoie)
        Reconstruct the multiplication and find the key-exhortation  to
        everybody's participation:  1 - 2'345674 - 1890.

                               
                  V A L I S E 
                    M O R U E 
               ---------------
                * * * 1 6 1 6
              * * * * * * *
            * * * * * * *
          * * * * * * *
        * * * 3 2 3 2
       -----------------------
        * * * * * 1 6 1 6 1 6 
 

 
48) Sphinx - Jan 1934  #4 - Page 11
       By Lapierre  (Wattrelos)
        Reconstruct the multiplication.

                               
                  A B C D E 
                  C E D B A 
                 -----------
                  * * * * *
                * * * * F
            * * * * * G
          * * * * * D
        * * * * * A
       ---------------------
        * * * * * * * * * * 
 

 
49) Sphinx - Jan 1934  #5 - Page 11
       By Rose-Innes  (Yokohama)
        All  3's are given.

                               
              * * 3 * 
                * * 3 
             ---------
              3 * * *
          * * * 3 3
          * * * * 
       ----------------
        * * * * * * *  
 

 
50) Sphinx - Jan 1934  #6 - Page 11
       By Paul Fayard  (Decazeville)
        Translate into words the following phrase:  7170 - 52 - 362840.
        All  1's and  0's are given in the partial products and total product.

                               
                  R I V E 
                F L A N C 
               -----------
                * * * * 0
              * * * * 0
            1 * * * 0
          * 0 * * 0
        1 * * 1 0
       -------------------
        * 1 * * 0 * * * 0 
 

 
51) Sphinx - Feb 1934  #7 - Page 24
       By Gallus (France)
        Two French mathematicians have 8 letter-sized names which, 
        transformed into figures by means of the key  12-34567890,  give  
        two numbers from which the square roots are extracted. 
 
        Herein, below, you'll  find what we know about  the two operations, 
        where the letters must be replaced with the corresponding figures.
 
        The key is, in the broad sense,  the birthplace of one of the 
        mathematicians, but not of the other one. 
 
        As for their death, it occurred in the century that is the maximum 
        common divisor of the two names.

  
               O I A O                  O C . .
      -----------------        -----------------           
    \/ . . . . . . . .       \/ . . . . . . . .
       . .                      . .
       -------                  -------
         . . .                  L E . .
         . . C                    . . .
         ---------                ---------
           . C . .                  . . . .
           . . . .                  . . . .
           -----------              -----------
             . . . . .                . . . . .
             O . . A O                . P . . .
             ---------                ---------
               . . . O                  . . . V
                     
 

 
52) Sphinx - Feb 1934  #8 - Page 25
       By Colaço  (Castro-Verde)
        What is the key for these two operations?

                               
                        L I O N
                          R A T 
                   -------------
                    L T H L R T
                  O P H P L 
                ----------------
     L A P I N  | O A H N R R T |  R N
                  O P N I E L  
                  -------------
                    E L T L L T
                    E E E T R H
                    -----------
                        E L P L
 

 
53) Sphinx - Feb 1934  #9 - Page 25
       By S. Vatriquant  (Brussels)
        
           * * * * R E L U E  =  ( L U E )3
 
 
 
54) Sphinx - Feb 1934  #10a - Page 25
       By M. Pigeolet  (Anvers)
        
        The numbers 90ABC17,  79ABC  and  491ABC4  are not relative prime. 
        What are these numbers?
 
 
 
55) Sphinx - Feb 1934  #10b - Page 25
       By M. Pigeolet  (Anvers)
        
         The numbers ABCD,  1920CD41,  496BC3,  872AB76  and  10A25D8  
         are not primes. What are these numbers?
 
 

56) Sphinx - Feb 1934  #10c - Page 25
       By M. Pigeolet  (Anvers)
        
        COLAÇO  is a square and   - CO + LA = ÇO. 
        There are two solutions;  don't consider the cedilla under
        the second C.
 

 
57) Sphinx - Feb 1934  #11 - Page 25
       By Rose-Innes  (Yokohama)  
        
        ABC  ×  BCA  ×  CAB  =  D63106938   if   A > B > C
 

 
58) Sphinx - Mar 1934  #13 - Page 39
       By K. de Haan  (Velsen, Holland)
        The sums of the numbers in the multiplier and in the 
        multiplicand are equal.

                               
                        . . . . . . . 
                      . . . . . . . . 
                     -----------------
                      . . . . . . . Q
                    T . . . . . . U
                  I . . . . . . E
                O . . . . . . S
              S . . . . . . T
            E . . . . . . I
          U . . . . . . O
        Q U E S T I O N
       -------------------------------
        . . . . . . . . . . . . . . . 
 

 
59) Sphinx - Mar 1934  #14 - Page 39
       By Amicus  (Brussels)
       Willing to break off from a (female) creature with an acid character, a chemist 
       left the following note for her:
 
               L I S O N  =  H2 S O4
 
       However, this note made the darling creature smile, as her name, which was
       so little gallantly factorized, was also equivalent to the amount of the cheque 
       joined to the note.  How much is the price of the break-off ?
 

 
60) Sphinx - Mar 1934  #15 - Page 39
       By A. Rose-Innes  (Yokohama)

           
         ABC × ACB × BAC × BCA × CAB × CBA = 298316E551967600
 
         if  A = 2 ( E - C )
 

 
61) Sphinx - Apr 1934  #16 - Page 60
       By Gallus (Lambres)
        Waiter!  The bill, please...
 
        A group of friends entered a pastry shop whose mark represents an animal 
        that covets a saucer: "83 5681 734  023569".
 
        Each person took a cup of their favourite drink (four different drinks: the first
        4 lines of the bill), plus one pastry, the same order for everybody (the 5th line). 
 
        Finally,  the waiter (a cryptarithm buff), brings the bill. The names of the 
        consumed items, pre-printed in the small note, are in the singular.  The digits 
        replace the letters and reciprocally. 
 
        Reconstruct the mark, the bill, the political opinion of the shop owner: 
        5816204739, and the author's name: "527", from  Lambres, in Pas-de-Calais.
 
 
                                  Unit
      Quantity    Item            Price       Amount
      -----------------------------------------------
          C       0841             U.QC        TA.QC
 
          E       169              U.OC        OE.OC
 
          A       58582 8 0'983    O.--        TH.--
 
          C       56252081         I.--        OL.--
 
         OQ       523739           T.IL        UQ.AL
       ----------------------------------------------
                                              TOT.AL
 

 
62) Sphinx - Apr 1934  #17 - Page 60
       By A. Decerf  (Paris)
        The snore sound number  RABOUBOUMRAM  is divisible by 
        2B5200B49.
 
        You will find this number by knowing the rules of divisibility by E, by UL 
        and by UU, etc. and practising the imperial Latin motto: 386097214. 
 

 
63) Sphinx - Apr 1934  #18 - Page 60
       By G. Cottin  (Brussels)
        (LAVALSEDAN)2 = * * * * * * * * * * LAVALSEDAN and 
        (SEDAN)2 = LAVALSEDAN.
 
 

64) Sphinx - Apr 1934  #19 - Page 60
       By G. Fistié  (Maestricht)
         Reconstruct these two connected multiplications. One is to be read normally
         but the other requires a half turn of the leaf.

                 
              * * * * * * * *
             -----------------                               
                    * * * * * 
                  * * * * * 
                * * * *
              * * * *
             ---------
              H S I X
              O I Z H
             ---------
              * * * X
          * * * * *
          * * * X
        * * * *
     -----------------
      * * * * * * * * 
 

 
65) Sphinx - Apr 1934  #20 - Page 61
       By M. Legros  (Jodoigne)
        A big blot of ink spilled over a multiplication permits identifying only
        its multiplicand 1234 and some digits of the product 4***38. 
        Reconstruct the multiplication.
 

 
66) Sphinx - May 1934  #21a - Page 71
       By M. Pigeolet  (Anvers)
        Reconstruct the multiplication.

                               
                   S P H I N X
                 * * * * * * *
                ---------------
                   S P H I N X
                 X S P H I N
               N X S P H I
             I N X S P H
           H I N X S P
         P H I N X S
       S P H I N X
      -------------------------
       S * * P * H I * * N * X
 

 
67) Sphinx - May 1934  #21b - Page 71
       By M. Pigeolet  (Anvers)
        Reconstruct the multiplication.

                               
                    P O S I T I F
                    N E G A T I F
                 -----------------
                  * * * * * * * *
                * * * * * * * *
              * * * * * * * *
          * * * * * * * *
        * * * * * * * *
        * * * * * * *
     -----------------------------
      N * * * * * * * E G A T I F 
 

 
68) Sphinx - May 1934  #22 - Page 71
       By Raphaël Robinson  (Berkeley, USA)
        Instead of a product of two powers:  ab . cd a printer, accidentally,
        composed this 4-digit number:  abcd. However, the value is the same.
        Find this unique number.
       

 
69) Sphinx - Jun 1934  #24 - Page 91
       By A. Lapierre  (Mouscron)
 

       After the sudden death of a wise astronomer, a piece of  semi-burnt paper was
       found in his fireplace where we can identify the remains of the arithmetical
       operation shown below. Can our Oedipuses reconstruct this document?
 
                               
          A      *      * 
          ------------------
               * * *  * * *
            *
            --------
               * * *                  * * *
               * * *                    A *
          ----------                      *
          * *  * * *                   -----               * *
               * * *  *                   *                * *
               --------                                      *
                                                           ----
                                                           * A
70) Sphinx - Jun 1934  #25 - Page 92
       By A. F. Colaço  (Castro-Verde)
        The numbers: 
 
        TSRABVOLUE,   RSBAOVTULE,   OSBURVLETA,  
        UBOSLRVEAT,   VLSOAEBTRU,   AUBTOELSRV,    
        BEOVSALRUT,   LTOVABERSU,   ELTUSBROVA,
        are squares. What is the key?
  
 
 
71) Sphinx - Jun 1934  #26 - Page 92
       By R. Man  (Brussels)
        A well known French name is the key of this multiplication,
        to be solved to the base 8 system.

                   
               L O T I
               R A V I
            -----------
             * * * * T
             L * * * 
         * * * * I
       O * * * *
      -----------------
       L * * * E * O T            
 

 
72) Sphinx - Jun 1934  #27 - Page 92
       By C. Miliopoulo  (Fontainebleau)
        The fragment of a cryptarithmetic table of squares and cubes was found. 
        You are required to reconstruct the table.


       * D *     * * * * * *     * * * * * * * D A                 
       * * *     * * * * * *     * * * * * * * D *
       * * *     * * * * * *     * * * * * * * * *
       * * *     * * * * * *     * * * * * * * * *
       * * B     * * B * * C     * * * * * * * * B
 

 
73) Sphinx - Jun 1934  #28 - Page 92
       By M. Legros  (Jodoigne)
        The  sum  of  the digits  represented  by the letters in the following 
        words form up an ascending arithmetical progression.
 
        POIRE,   OPERA,   PORTE,   TAPIS,   ASTRE,   PATRE,   LOTUS,
        LISTE,   LOUPE,   OUTRE,  . . .
 

 
74) Sphinx - Jun 1934  #29 - Page 92
       By G. Fistié  (Maestricht)
        S E L L E S   is a square.
 

 
75) Sphinx - Jul 1934  #33 - Page 102
       By M. Legros  (Jodoigne)
        Reconstruct the following dance where each letter
        stands for a prime number.

                   
               V A L S E
               S L A V E
            -------------
             * * * * * *
           * * * * * *
         * * * * * * 
         * * * * *
       * * * * *
      -------------------
       * * * * * * * L E 
 

 
76) Sphinx - Jul 1934  #34 - Page 102
       By G. Fistié  (Maestricht)
        Knowing that  DEF  and  FAE  are multiples of 11 and that
 
        D E F
        F A E
        * H F
     ---------
      * * H D
 
         find the number  D***A***F  which is a cube.
 

 
77) Sphinx - Sep 1934  #36 - Page 136
       By A. Baudenne  (Annevoie)
         ADELE, the  farmer, reversed her grog  inadvertently:
 
         L E   G R O G   D E   L A   F E R M I E R E
     +  E R   E I M R   E F   A L   E D G O R G E L
     -----------------------------------------------
        3 *   * 1 4 *   * 1   5 *   * * * * * 9 * *
 
          She asks her husband ROGER to reconstruct her grog knowing that

          A D E L E
        + R O G E R
        ------------
          9 8 9 3 7
 
           ROGER is completely... groggy! 
           But that doesn't prevent him from continuing to read
 
                       "12  3456472  82  967450"
 

 
78) Sphinx - Sep 1934  #37 - Page 136
       By G. Cottin  (Brussels)
         OHEM  and OMLI are  the squares of two consecutive numbers: RG and 
         RA, respectively.
 
         Also  RG  +  RA =  LET,  and  OHEM + OMLI = RTOR.  
         What is the key?
 

 
79) Sphinx - Sep 1934  #38 - Page 136
       By M. Pigeolet (Anvers)
        Reconstruct the multiplication.
        
                 X S P H I
                 * * * * *
              -------------             
               S P H I N X
             X S P H I 
         I N X S P H
       H I N X S P
      ---------------------
       * S * * * S S S * * 
 

 
80) Sphinx - Sep 1934  #39 - Page 136
       By A. Colaço  (Castro-Verde)
         
         GALON  and  ALONG  are the squares of  GOO  and  OOG  respectively 
         to the base 6 system. What are these numbers?
 
 
 
81) Sphinx - Sep 1934  #40 - Page 136
       By C. Milopoulo  (Fontainebleau)
         When the numbers 1234567890 are substituted for an
         English word, it is possible to make the following magic 
         square. The sums of the rows, columns and diagonals 
         are 275.
                      
          R L   A A   C N   B D   R C
 
          A E   M C   M L   E A   R B
 
          U A   M B   E E   L R   A U
 
          B R   E U   L M   L N   U E
 
          B N   L D   N C   U U   B M
 

 
82) Sphinx - Oct 1934  #41 - Page 149
       By G. Cottin  (Brussels)
 
 
        Find the key, knowing that  R  is a prime:
 
                
       A L G E R  =  R2  ×  N I G
 
       D E L T A  =  R [(A A D R  x  O) + R]
 

 
83) Sphinx - Oct 1934  #42 - Page 149
       By A. F. Colaço  (Castro-Verde)
        In the system of numeration base 6, we have:
 
                 A M I C U S    is a square,
                 A                      is a square,
                     M I               is to the fifth power,
                          I C U S    is a square,
                                U S    is a square.
 

 
84) Sphinx - Oct 1934  #43 - Page 149
       By G. Fistié  (Maestricht)
        Find  PIGEOLET, which is a cube. All the T's are given.
        
 
             E * * * T
               * * E T
          -------------             
           * * * * E T
           T * * * * 
       E * * * * *
       E * * * T
      -----------------
       P I G E O L E T 
 

 
85) Sphinx - Nov 1934  #47 - Page 169
       By G. Fistié  (Maestricht)
        A A A U2 = A L U M I N E   if:
        (A + A + A + U)2 = A + L + U + M + I + N + E.
 
 

86) Sphinx - Nov 1934  #48 - Page 169
       From:  The Strand Magazine  (1922)
        Reconstruct the multiplication:
 
        N X P S I   ×  H  =  S P H I N X
 

 
87) Sphinx - Nov 1934  #49 - Page 169
       By A. Rose-Innès  (Yokohama)
        There are eight brothers and sisters in a family: Georgette, Ulysse, 
        Yvan, Marie, Annette, Roger, Isidore and Emile. All are less then
        10 years old. If you represent the age of each child by the first 
        letter of its name, you obtain:
                    
                      Y U
              ------------
       G U Y  | M A R I E             
                M A R E
                ---------
                      E E

          If Marie is the youngest of the sisters, what is her age? 
 

 
88) Sphinx - Dec 1934  #52 - Page 185
       From:  Denksport  1933  (Amsterdam)
        All the digits and zero are used in the multiplier and the
        multiplicand. All the 2's in the problem are given.   Find 
        the two solutions.
        
                    * * * * *
                    * * 2 * *
                 -------------
                  * * * * 2 *             
                * 2 * * 2 *
              * * * 2 * * 
            * * * * 2 *
          2 * * * * 2
         ---------------------
    a):   * 2 * 2 2 * * * * *
    b):   * 2 * * * * * * * *
 

 
89) Sphinx - Dec 1934  #54 - Page 185
       By A. Gloden  (Luxemburg)
        A B B C C A   is a square, in which  C = 2B.
 
 
 
90) Sphinx - Dec 1934  #55 - Page 185
       By R. Baras  (Saint-Cloud)
        The series of numbers:
 
               NC - NL - NO - NU - TD - TS - TA
 
         forms an ascending arithmetic progression and the sum of these
         numbers is:  I N I.  What is the key?
 
 
 
91) Sphinx - Dec 1934  #56 - Page 185
       By G. Cottin  (Brussels)
        Find the key of this pair that must be solved together:

      C H I N E            C H I N E
    +   I N D E          -   I N D E
     -----------          -----------
      H O E E C            C O P R Y 
 
 

92) Sphinx - Dec 1934  #57 - Page 185
       By A. Baudenne  (Annevoie)
        An extract from a historical novel:   "Facing this terrible sight,  the duchess 
        uttered a terrifying cry:  HARRY, CAYLUS SE TUE ...!!! " (Harry, Caylus is
        killing himself...!!!); and the echo quickly repeats it by the thousand.
 
              A R R Y C A Y L U S S E T U E
                                    U T L A
          ----------------------------------
            Y L U S S E T U E H A R R Y C A
          A Y L U S S E T U E H A R R Y C
        C A Y L U S S E T U E H A R R Y
      Y C A Y L U S S E T U E H A R R
     ---------------------------------------
      Y E T S E T U E H A R R Y C A Y T T A    



FILL IN THE GAPS IN THE
SPHINX COLLECTION
If you know where to find any of the Sphinx editions years 1931, 1932, 1935, 1936, 1937, 1938 or 1939, please contact us.
Copies of these issues are needed to complete our collection of Sphinx cryptarithms.
Thank you !




ANSWERS


    1)  462193 x 3952617 = 1826871909081
 
    2)  625=54,  256=44
 
    3)  567 = 3 × 189
 
    4)  4913-3375-5832-2744-4096-6859-9261-1331-1728-8000
 
    5)  18671041 = 43212
 
    6)  234 = 3 × 78
 
    7)  682276 ÷ 826 = 826
 
    8)  4502652 ÷ 28 = 160809
 
    9)  x=8, y=9, z=10
        ABC=271, ACB=217, ABC+ACB=488
 
    10) 994009 = 9972
 
    11) 4213 × 2486 = 10473518
 
    12) 715716 = 8462
 
    13) 1 2 3 4 5 6 7 8 9 0
        N P S A I M E L R O
 
    14) 15460632 ÷ 95436 = 162
 
    15) 20449 = 1432
 
    16) 168 × 30275 = 5086200 ÷ 49 = 103800
 
    17) 341737 × 576 = 196840512
 
    18) PIGEOLET = 08163265
 
    19) ROSE-INNES = 9216-53361
 
    20) 969 × 199 = 192831
 
    21) The problem admits 3 solutions. Dividend=18530
        or 18531 or 18532. Divisor=627. Quotient=29.
 
    22) 7932 = 628849
 
    23) NED=925, SASH=1813, SHUN=1369, SEND=1295, SEED=1225. 
 
    24) 10162 = 1032256
 
    25) 5552 = 308025
 
    26) 3527 + 3735 = 7262,    7253 - 2177 = 5076
 
    27) 49607 × 524 = 25994068
 
    28) ABCD=1296,  BCAD=2916 and  CBAD=9216.
 
    29) ABCDE = 18769,  BACED = 81796
 
    30) SEPTEMBRE = 721425902
 
    31) 183184 = 4282
      
    32) ABCD=9741 or ABCD=9027
 
    33) AAAB = 2221
 
    34) 14530 × 62789 = 912324170
 
    35) OCTOBRE = 7197204
 
    36) 112979 x 87 = 9829173
 
    37) 6733 × 86625 = 583246125
 
    38) 1 2 3 4 5 6 7 8 9 0
        N A E U M G I L S C
 
    39) 9376 × 9376 = 87909376
 
    40) 10465225 = 32352
 
    41) 15984004 = 39982
 
    42) 9871 × 75983648 = 750034589408
 
    43) ABACDEBDECA = 27216576512 = 30083
 
    44) 16760836 = 40942
 
    45) 1936 × 54289 = 105103504 = 102522
 
    46) 1 2 3 4 5 6 7 8 9 0
        S P H E R O I D A L
 
    47) 612904 × 83754 = 51333161616
        1-2'345674-1890 = A-L'OEUVRE-AMIS
 
    48) 24697 × 67942 = 1677963574
 
    49) 1237 × 893 = 1104641
 
    50) 6170 × 35284 = 217702280 
        7170-52-362840 = VIVE-LA-FRANCE
 
    51) 1 2 3 4 5 6 7 8 9 0
        L A P R O V I N C E
        57252 = 32781060 = PAINLEVÉ
        59822 = 35789240 = POINCARÉ
        XXth century
 
    52) 1 2 3 4 5 6 7 8 9 0
        O R P H E L I N A T
 
    53) 420189749 = 7493
 
    54) ABC=315 or ABC=862
 
    55) ABCD=8524
 
    56) COLACO=163216 or COLACO=367236
 
    57) 943 x 439 x 394 = 163106938
 
    58) 9188837 × 75436928 = 693177635172736
 
    59) 61250 = 72 . 2 . 54 
 
    60) 651 × 615 × 561 × 516 × 165 × 156 = 2983164551967600

 
    61) mark: AU CHAT QUI LOUCHE
        owner's political opinion: CATHOLIQUE
        author's name: COQ
 
    62) RABOUBOUMRAM=986016012982, 386097214=LABOREMUS
 
    63) (8212890625)2 = 67451572418212890625
        (906252 = 8212890625
 
    64) 1368 × 7691 = 10521288
        1967 × 8631 = 16977177
 
    65) 1234 × 357 = 440538
 
    66) 142857 x 1326451 = 189492810507
 
    67) 7842625 x 1390625 = 10906150390625
 
    68) 25 × 92 = 2592
 
    69) 932574833 = 9773
 
    70) 1 2 3 4 5 6 7 8 9 0
        T R O U V A B L E S
 
    71) 1 2 3 4 5 6 7 0
        V O L T A I R E
 
    72) 475 - 476 - 477 - 478 - 479
 
    73) 1 2 3 4 5 6 7 8 9 0
        S P O L I A T E U R
 
    74) 698896 = 8362
 
    75) 37215 × 12735 = 473933025
 
    76) DEF=517,  FAE=781,  D***A***F=517781627
 
    77) 1 2 3 4 5 6 7 8 9 0
        L E M A R I G D F O
 
    78) 1 2 3 4 5 6 7 8 9 0
        L O G A R I T H M E
 
    79) 76923 × 34109 = 2623766607
        
    80) 15324 = 1222,  53241 = 2212 to the base 6
 
    81) 1 2 3 4 5 6 7 8 9 0
        C U M B E R L A N D
 
    82) 1 2 3 4 5 6 7 8 9 0
        A N G L E D R O I T
 
    83) AMICUS = 452013 to the base 6
 
    84) 26645 x 1825 = 48627125
 
    85) 11132 = 1238769
 
    86) 54618 × 3 = 163854
 
    87) Three years old. The key is:  1 2 3 4 5 6 7 8 9 0
                                      E I M G   A   R Y U
 
    88) a) 89104 × 36275 = 3232247600 
        b) 65103 × 49287 = 3208731561
 
    89) 7152 = 511225
 
    90) 1 2 3 4 5 6 7 8 9 0
        S A I N T C L O U D
 
    91) 1 2 3 4 5 6 7 8 9 0
        P O N D I C H E R Y
 
    92) 1 2 3 4 5 6 7 8 9 0
        S Y C U A T E R L H
 



[ Home ]
[ My Cryptarithms ]
[ Crack a Puzzle Online! ]
[ The Sphinx Collection ]
[ A Primer on Cryptarithmetic ]
[ Alphametic Puzzle Solver ]
[ Alphametic Puzzle Generator ]
[ Books on Cryptarithmetic ]
[ Links to Cryptarithm Sites on the Web ]
[ Sphinx memorial ]


Copyright © 2002 by Jorge A C B Soares.
All rights reserved.
Last updated: September 1st, 2010.

COMMENTS TO: _soares_jorge@hotmail.com